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Abstract. This paper presents a novel framework to substantiate self-
signed certificates in the absence of a trusted certificate authority. In
particular, we aim to address the problem of web-based SSL man-in-the-
middle attacks. This problem originates from the fact that public keys
are distributed through insecure channels prior to encryption. Therefore,
a man-in-the-middle attacker may substitute an arbitrary public key
during the exchange process and compromise communication between a
client and server. Typically, web clients (browsers) recognize this poten-
tial security breach and display warning prompts, but often to no avail
as users simply accept the certificate since they lack the understanding
of Public Key Infrastructures (PKIs) and the meaning of these warnings.
In order to enhance the security of public key exchanges, we have devised
an automated system to leverage one or more vantage points of a certifi-
cate from hosts that have distinct pathways to a remote server. That is,
we have a set of distributed servers simultaneously retrieve the server’s
public key. By comparing the keys received by peers, we can identify any
deviations and verify that an attacker has not compromised the link be-
tween a client and server. This is attributable to the fact that an attacker
would have to compromise all paths between these vantage points and
the server. Therefore, our technique greatly reduces the likelihood of a
successful attack, and removes the necessity for human interaction.

1 Introduction

As e-commerce and subsequent online transactions emerged on the Internet,
there became a need to protect sensitive communication. This requirement was
partially fulfilled by introducing public key cryptography to secure key ex-
changes. Public key cryptography utilizes certificates to bind an entity to a
specific public key with a digital signature. This digital signature may belong to
a well-known Certificate Authority (CA) or the creator of the certificate. The
former is generally regarded as more secure, but has been exploited previously
due to improper implementations [3]. The latter poses a greater security risk, be-
cause there is no way (other than manually verifying the certificate’s fingerprint)
to confirm the identity of the owner. As a result, a malicious host can exploit this



uncertainty through the use of a man-in-the-middle attack by intercepting and
altering a certificate to impersonate the same party with another key known to
the attacker. When the public key on the certificate is replaced with the key of
an attacker, the integrity of the encrypted session is compromised if the forged
certificate is accepted.

The most popular public key encryption protocol for the World Wide Web
has been the Secure Sockets Layer (SSL) and its successor, the Transport Layer
Security (TLS) protocol. While these protocols have proven to be relatively ef-
fective, they are also vulnerable to man-in-the-middle attacks in situations where
the user or the client implementation is not able to detect the fraudulent cer-
tificate. These attacks are normally a consequence of other insecure protocols
that allow a malicious host to easily become a man-in-the-middle. Some of these
exploitable protocols include the Address Resolution Protocol (ARP), Domain
Name System (DNS), and Dynamic Host Configuration Protocol (DHCP). Wire-
less networks are also particularly vulnerable since attackers can easily deploy
rogue access points, modify unencrypted link layer frames, and are susceptible
to most switched Local Area Network (LAN) attacks. Only in large networks
with sophisticated Intrusion Detection Systems (IDS) are these attacks routinely
detected and prevented.

In order to prevent SSL man-in-the-middle attacks on the Internet, several
companies operate as certificate authorities to digitally sign X.509 certificates.
Certificates from these CAs are assumed to be secure, since their public keys are
well-known and are included with standard web browser distributions. Therefore,
a web browser only needs to confirm that the digital signature on a certificate
matches one of these trusted CAs. For the majority of cases, the certificates
signed by these CAs function well. However, the service that these CAs provide
comes at a fairly high cost, which deters some web server administrators from
purchasing certificates from them. Current rates for a single domain certificate
cost approximately $100-$200 USD per year, and a wildcard domain certifi-
cate costs about $500-$1,000 USD per year!. To avoid this expensive surcharge,
smaller web sites often create their own self-signed certificates, or purchase a
certificate for only a single domain.

When a certificate is self-signed or if the common name and fully qualified do-
main name do not correspond, nearly all web browsers will display a prompt that
requests user input on whether to accept the certificate. These warning dialogs
occur even when visiting popular sites like https://amazon.com and https:
//bankofamerica.com because the common name on their certificates are reg-
istered only to https://www.amazon.com and https://www.bankofamerica.
com, respectively. The problem derives from the fact that many web users do
not understand the meaning of these “cryptic” messages, and will accept almost
any certificate [21]. Therefore we believe that it is important to develop a system
that does not require user attention for normal users, while offering supplemental
knowledge for expert computer users to determine the legitimacy of a certificate,
without having prior knowledge of the remote web server’s public key.

! http://www.digicert.com/



In this paper, we propose a novel solution to augment the security of SSL
certificate exchanges. The primary objective of our system is to remove certifi-
cate prompts from the web browser, and instead rely on what peers elsewhere
on the Internet observe. We term these outside peers verification servers and
refer to them as such throughout the paper. By combining multiple views from
verification servers, our system greatly reduces the likelihood that an attacker
can intercept and inject their own certificate during the SSL handshake without
being detected. This follows from our method to select verifications servers such
that they have different pathways to a remote web server. As a result, our ap-
proach considerably minimizes the potential man-in-the-middle attack vectors
because an attacker would have to compromise all these paths to launch a suc-
cessful man-in-the-middle attack. To select servers that have different paths, our
system leverages Autonomous System (AS) level topological mappings. Another
benefit our of design is that it is based on existing protocols. Therefore, our sys-
tem can be readily deployed, since it requires no modifications to web servers,
and can be implemented in current web browsers through an extension or plug-
in. In order to evaluate our system’s relative effectiveness and performance, we
deployed our prototype on PlanetLab [15]. Further applications of our design
also extend to other non-web-based public key protocols including Secure Shell
(SSH), Internet Message Access Protocol (IMAPS), and Secure Copy (SCP).

The remainder of this paper is organized as follows. In Section 2, we intro-
duce relevant work that has been previously performed. Section 3 explains how
and why SSL man-in-the-middle attacks work and the potential attack vectors.
Section 4 presents our design considerations, system architecture, and certificate
verification process. We then provide an evaluation of our system and poten-
tial extensions in Section 5. Finally, Section 6 concludes with a summary of our
contributions.

2 Related Work

There are various protocols from the link layer to the application layer that have
been exploited using man-in-the-middle attacks. As a result, there have been nu-
merous studies to detect and prevent the root causes of each vulnerability. One
of the most prominent man-in-the-middle attacks on a LAN is ARP poisoning
[20]. This link layer protocol is insecure since it neither provides any form of mes-
sage authentication nor maintains any state information. In order to mend these
vulnerabilities, several solutions have been proposed that authenticate hosts and
record the bindings of link layer MAC addresses to network layer IP addresses
[2][10][12]. The problem with these solutions is that they are difficult to deploy
due to added infrastructure, operating system modifications for all connected
hosts, and complexities in key distribution for authentication.

Another common local man-in-the-middle attack exploits the DHCP pro-
tocol, which is used to automate network configurations. Since DHCP lacks
message authentication, an attacker can impersonate and forge DHCP replies
to other hosts, thus manipulating the victim’s IP address, gateway address, and



DNS server information. To mitigate this vulnerability, several authentication
and access control systems have been proposed [1][6][11]. These approaches share
the same limitations as the ARP prevention systems in that all hosts require op-
erating system modifications to access the network. Moreover, they require the
configuration and setup of authentication servers.

Potentially the most dangerous man-in-the-middle vulnerability stems from
the weaknesses of DNS. Due to the hierarchical structure of DNS, an attacker
may spoof DNS responses that may affect not only a local network, but also
remote networks. To address these shortcomings, the Domain Name System Se-
curity Extensions (DNSSEC) protocol was proposed [8]. DNSSEC is designed
to prevent manipulation of DNS queries and replies via authentication and data
integrity. Current deployment of this protocol has been impeded by a lack of
backward-compatibility with existing DNS servers and hosts. ConfiDNS is an-
other system that monitors DNS replies from multiple vantage points, with
the goal of identifying inconsistencies [16]. However, ConfiDNS is only effec-
tive against attacks on local DNS servers, and has difficulty with discrepancies
produced by DNS load balancing.

An alternative approach to improve current PKIs was introduced by Zhou
et al. through a distributed online certificate authority with a fault-tolerant
algorithm that uses Byzantine quorums, called COCA [22]. While this solution
is elaborate, there are numerous complexities in the distributed infrastructure
that make it impractical to deploy, configure, and maintain.

Unfortunately, all of the preceding solutions require extensive modifications
to hosts, lack support for non-compliant hosts, or both. Instead of developing
multiple protocols to address all possible man-in-the-middle attack vectors, we
take a different approach and provide a method to avert these attacks at the ap-
plication level. This solution permits users of our system to install a web browser
plug-in, which will run silently in the background. This technique makes our
system backward-compatible with all existing protocols. When we combine this
method with lightweight verification servers, we are able to attain a considerably
more deployable solution.

3 SSL Man-in-the-Middle Attack Overview

A man-in-the-middle attack occurs when a malicious host deceives others into
forwarding their traffic to them by impersonating the intended receiver. The po-
tential for these attacks exist in virtually all networks that use unauthenticated
communication (e.g., no encryption and/or message integrity checks). Conse-
quently, these packet manipulations facilitate man-in-the-middle attacks on en-
crypted protocols that exchange public keys through certificates. This weakness
is due to the fact that most implementations of cryptographic algorithms al-
low user interaction to accept self-signed certificates and their associated public
keys. Tools that automate these exploits include webmitm[7] and ettercap[9].
An attacker using these tools is able to redirect all of a victim’s traffic to himself
instead of the original destination. Figure 1 demonstrates a classic SSL man-in-
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Fig. 1. Example of an SSL. Man-in-the-Middle Attack.

the-middle attack. In this example, Alice and Bob want to communicate with
each other using SSL. The first step in the SSL handshake requires Alice to
contact Bob and request his certificate containing his public key, Pg. However,
without Alice’s knowledge, Mallorie, who is on the same physical network as
Alice, has previously poisoned her ARP cache, causing Alice to address all of
her packets to Mallorie. When Mallorie observes Alice’s SSL request, she is able
to intercept her request and make her own SSL connection to Bob. Mallorie then
replies to Alice’s request with her own public key, P ;. Alice is prompted by her
web browser that the certificate that she received was valid, but not signed by
a trusted CA. Unfortunately, Alice does not know the meaning of the warning
and accepts the forged certificate. Alice now begins encrypting her traffic to Bob
using the public key of Mallorie, Pj;. Consequently, Mallorie is able to decrypt,
monitor, and modify all communications before relaying messages between Alice
and Bob.

As illustrated in the preceding example, most current web browsers display
warning prompts when certificates cannot be validated. These dialogs commonly
appear in the following cases:

— A certificate has expired.

— A certificate is signed by a trusted CA and belongs to a domain (without
wildcards), but is not associated with any subdomain
(e.g., https://bankofamerica.com wvs. https://www.bankofamerica.com).

— The common name on the certificate does not match the domain name of
the host.

— A certificate is not signed by a trusted certificate authority (e.g., a self-signed
certificate or a certificate signed by a non-trusted CA).

Figure 2 shows an example of a typical certificate mismatch dialog displayed
by web browsers.
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Fig. 2. Moxzilla Firefox warning that a certificate is not signed by a trusted CA.

4 System Architecture

In this section, we first present the considerations that went into our design, as
well as the assumptions that were made. Next, we introduce our system’s archi-
tecture and explain each component in detail. We then discuss our certificate
verification process. Finally, we describe how clients determine which verification
servers to contact.

4.1 Design Considerations

Before we examine the details of our design, we first present our security threat
model and our assumptions.

The basis for our design is derived from our security threat model shown, in
Figure 3. We believe that because most users of web applications are not experts
in public key cryptography, they are the weakest link in the process when given
the power to make a decision to accept a certificate. In contrast, verification and
web servers are generally deployed by security-conscious network administrators
(i.e., experts), who are knowledgeable about certificates, PKIs, and common
network vulnerabilities. Since attackers are more likely to exploit the easiest
target, which is frequently the user’s inexperience with certificates, it is critical
to assist the client in making the correct decision to reduce this vulnerability.
Therefore, our system focuses particularly on protecting the client from these
man-in-the-middle attacks during public key exchanges.



Managed Verification Web

[

o >
by Experts Servers Server S 2

£ 3

S E
Utilized by . o 5
Few Experts Client u>j

Fig. 3. VeriKey Security Threat Model.

In our design, we have made the following assumptions.

1. Web servers and verification servers are on relatively secure networks (i.e.,
networks that perform some form of monitoring) and have not all been com-
promised. Depending on the number of verification servers utilized, our sys-
tem may still function properly if one or more verification servers have been
compromised.

2. The client must be able to authenticate and communicate securely with
the verification servers. This requirement can be put into practice by dis-
tributing the certificates of verification servers to the client as part of a web
browser extension. This serves as a pre-shared key mechanism so that the
client can authenticate the verification server as well as communicate over a
secure, encrypted connection. Alternatively, verification servers may obtain
certificates from well-known CAs and eliminate the need to acquire each
verification server’s public key from the browser plug-in.

3. There exists at least one non-compromised pathway to a web server. Our sys-
tem depends on this notion to identify inconsistencies reported by different
verification servers. Therefore, if a man-in-the-middle is located on or near
the web server’s network, or if only one pathway to the web server exists, our
system would not be able to detect an attack. We are confident, however,
that in most cases this assumption holds because an attacker will normally
exploit vulnerable client networks (e.g., an insecure wireless hotspot). We
discuss the impacts of this assumption later in Section 5.4.

4.2 Certificate Verification Components

In this section, we present the components that make our system effective in sub-
verting man-in-the-middle attacks based on the preceding set of assumptions. As
previously mentioned, the general idea of our system is to add an extra layer of
security to public key exchanges by coalescing diverse views from trusted peers,
and verifying that they are the same. We achieve this verification with an auto-
mated process, which is critical in removing user interaction that may otherwise
compromise security. The fundamental principles that we incorporated in our
design are based on the inherent lack of user understanding about the operation
of public key cryptography. Therefore, the client-side of the verification system
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Fig. 4. Components of the VeriKey System Architecture.

must be extremely easy to use. On the server-side, simplicity and compatibility
with existing web servers is essential. Hence, a web server should be able to
interface with our system with no modifications. For certificate validation, we
have developed a lightweight verification server that provides the client with its
own perception of a remote certificate.

As shown in Figure 4, there are three main components of our system that
implement our objectives: the client, verification servers, and web server. The
client that we refer to includes standard web browsers with extension support
(e.g., a Mouzilla Firefox/Opera plug-in or Internet Explorer add-on). The second
component can be almost any existing web server with SSL support such as
Apache, IIS, or Tomcat. These web servers will function with our system with
no alterations or additional modules. The verification servers operate as the
intermediary between the client and web server and handle certificate exchanges,
caching, and verification.

4.3 System Deployment

Deploying our system is straightforward. The only requirement for a client is to
install a web browser plug-in. We also provide the option for advanced users to
deploy their own verification servers (although not necessary). The deployment
process to interface with VeriKey is described below.

Client. The client must perform a one-time installation of our web browser
extension. This extension contains a pairwise set of IP addresses and certificates



containing the public keys for the default verification servers {{IPy, Py, }, {IP2,
Py,}, {IP,, Py, }}. As mentioned previously, verification servers may also at-
tain a digitally signed certificate from a well-known CA such as VeriSign. In
that case, only the distribution of their IP addresses is necessary. In addition,
pre-computed AS topology maps are bundled that assist in verification server
selection (discussed later in Section 4.5). The extension also has the ability to
automatically update, revoke, and add new verification servers. Expert users
may configure extra security requirements and have the option to integrate the
information obtained during the verification process into the default security
warning rather than allowing an automatic decision to be made on their behalf.

Verification Server. As previously discussed, more advanced users have the
ability to deploy and configure their own verification servers. The web browser
extension can then be configured to update its verification server set to point to
these new custom servers. These verification servers may be deployed at research
institutions, corporations, and other large organizations.

4.4 Certificate Integrity and Verification

In order to efficiently validate certificates, we have devised the following method-
ology as demonstrated in Figure 5.

Case 0: The initial step involves retrieving the web server’s certificate. This
exchange ensues during the SSL handshake, and the client must then confirm
whether a trusted CA has signed the certificate.

Case 1: If the certificate has been signed by a trusted CA, the common name
on the certificate is compared with the domain name of the web server.

— If the common name matches the domain name of the web server, the cer-
tificate should be trusted and the SSL connection can proceed normally. We
ignore any mismatch between a domain and its possible subdomains, which
commonly occurs when web sites do not purchase wildcard certificates and
thus trigger warning messages. We justify this rationale based on the fact
that it would be extremely difficult for an attacker to acquire a legitimate
certificate for a subdomain that belonged to another entity.

— If the common name does not match the domain of the web server, the certifi-
cate (although valid), should not be trusted and the SSL connection between
the client and web server should be blocked. This would occur when a man-
in-the-middle has obtained a legitimate signed certificate from a trusted CA
but for a different domain. Thus the man-in-the-middle could inject his own
certificate (e.g., www.hacker.com) during communications with another web
server (e.g., www.bank.com).
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Case 2: If the certificate has not been signed by a trusted CA (e.g., is self-
signed), then the VeriKey certificate verification process will commence accord-
ingly. Each of the following steps are illustrated in Figure 6.

1. Client communication with verification servers. The client connects
to a number of verification servers. How these servers are selected will be
discussed in the following section. After completing the handshake, the client
verifies that the SSL handshake results in the reception of the correct public
key of the verification server, P,. If the certificate does not match, there is
a man-in-the-middle between the client and verification server. Otherwise,
the client sends the full domain name and IP address of the web server to
the verification server. The purpose of sending the pair (domain, IP) is to
enable the verification server to determine if its own DNS resolution matches
that of the client. In addition, these pairs are required when a single domain
name may resolve to multiple IP addresses.

2. Certificate Request. The verification server checks its internal cache to
see if it has previously retrieved the certificate. If the public key is not found
in the cache, it connects to the web server to retrieve the server’s certificate.



Otherwise, the verification server forwards the cached public key of the web
server to the client and Step 3 is omitted.

. Certificate Exchange. The verification server (a) connects to the web
server to retrieve its public key and (b) forwards it to the client.

. Public Key Verification. At this stage, the client can now compare the
certificate and public key of the server. If the public keys match, the client
can communicate with the web server. Otherwise, there is a problem with the
connection (e.g., a man-in-the-middle) and the client will be notified that a
potential security risk has been identified and the web server connection will
be terminated. If the client’s browser plug-in has been configured with higher
security requirements, multiple verification servers will be utilized to verify
the public key of the web server. When this option is chosen, a variable-based
threshold 7 is used in determining the number of public key matches p that
are required from the verification servers such that ¢ > 7. When the plug-in
is configured in expert mode, the observed results are presented to the user,
enabling them to make a manual decision instead of aborting the connection.
In Section 5.5, we propose a mechanism to use the verification server as an
SSL proxy, which may offer an alternative secure communication channel to
the web server when a man-in-the-middle has been detected.

. (Optional) Verification Status Report. This last step is optional, but
allows a client to provide feedback to verification servers on the results of the
certificate verification. This step enables the verification servers to determine
if a certificate on the remote web server has changed and needs to be updated
as well as to construct records of man-in-the-middle attacks.
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Fig. 6. The VeriKey certificate verification process.



4.5 Verification Server Selection

The architecture of our system provides support for utilizing multiple verifica-
tion servers. A client may elect to query several verification servers for their view
of a particular web server’s certificate, which in the general case, will enhance a
client’s perspective. However, this technique may neither be the most effective
nor efficient method to validate certificates. There is the possibility that one or
more verification servers will share the same pathway to the web server. This sce-
nario would occur if an attacker was positioned on one of these shared pathways
between the client and server. Thus, the security of the verification process does
not always increase with the number of responses from additional verification
servers. In order to determine the number and locations of verification servers
to query, we have developed our own selection algorithm.

Before presenting our verification server selection technique, we first intro-
duce other potential selection options and the relevant effects. In order to assist
our analysis, we define the distance between two hosts as the number of Au-
tonomous System (AS) links on the shortest path between them and denote
this as d(source, destination). The selection procedure may optimize for latency,
limited resources, and/or security. The easiest way to reduce the latency of the
verification process is to minimize the sum of the distances between client, ver-
ification server, and web server (i.e., min {d(C,Vs;) + d(Vs;, Ws)},V 1 Vsy).
However, this method is naive, because when the combined distance is minimal
there is a higher probability that more than one of these hosts have paths that
overlap.

If limiting the amount of resources (e.g., CPU time and bandwidth) is an im-
portant consideration, a client can randomly select a single verification server.
This approach has several limitations including an increased response time, par-
ticularly if the verification server is located far from the client and web server.
Our approach, however, enhances security while reducing latency and resources
when selecting a verification server. We achieve this functionality by computing
the shortest AS pathways in advance and then utilize the information to compare
the overlap among a set of verification servers. This data can be collected from
publicly available Internet topology maps that analyze BGP routing dynamics to
discover AS adjacencies. The data sources and the details of our implementation
are discussed later in this section.

We denote the path between client and web server as C = Wy and the
path between verification server and web server as Vg = Wy, where C, Vg, and
W represent the client, verification server(s), and web server respectively. We
first calculate the shortest path between the AS of the source and the AS of
the destination (given our topology information). After this computation, we
select the verification server that has the least amount of link overlap between
the two paths (i.e., min{C = WgNVg; = Ws}, V: Vg;). If more than one
shortest pathway exists between hosts, we calculate the average overlap between

n
paths according to the equation %Z A; where A is the number of links that

i=1
overlap. This rationale follows from the fact that an attacker cannot influence



or predict the exact path between any two hosts, and packets are more probable
to follow shorter pathways. If there are multiple paths that have equivalent
overlap, one path will be selected randomly from the potential paths with a
uniform probability.

An example of our verification selection algorithm is shown in Figure 7. In
this instance, the client is located within the UCSB AS, and is connecting to a
Bank of America web server. The client has three verification server options to
choose from that include UC Berkeley, Stanford University, and the University
of Washington. Using the pre-computed routes between each verification server
and Bank of America, the client selects the verification server with the least
number of shared AS links. In this case, the optimal verification server is at
Stanford University since it shares no path overlap with the connection between
the UCSB client and Bank of America. Conversely, the verification server at
Berkeley would be considered the least suitable of the three, since its path to
Bank of America shares two AS links (CENIC and Level 3 Communications)
with the path from the client to the bank.

Stanford
Vsq

UCSB
(Client)

Bank of America
(Web Server)

Berkeley
Vs2

University of
Washington

Vs3

Fig. 7. Verification server selection example for a client at UCSB to the web server at
Bank of America. Path overlaps are highlighted in bold.



Our path selection algorithm provides an important advantage, since the IP
to AS mappings enable us to determine a priori the relative security of the
verification process. Thus, we can ensure that the client, verification server, and
web server are not on the same networks by analyzing each host’s AS number
(AS{C}, AS{VS}, AS{WS}). If any two have the same AS number, there is
a higher risk of a man-in-the-middle since one or more links will likely be in
common. In addition, the path selection algorithm that we utilize also enables us
to determine the relative effectiveness of a chosen verification server. In the worst
case, (C = Wg C Vg = Wg), which signifies that the client and verification
server share the same path to the web server and the verification process will
not be effective. Furthermore, our topological maps allow us to select verification
servers efficiently even when a client machine is physically relocated (e.g., a
laptop that may frequently change locations).

We implemented our selection process by computing the shortest paths and
locations of verification servers in relation to various netblocks using AS topo-
logical mapping engines such as CAIDA’s skitter?, Route Views [13], and the
Routing Information Service (RIS) [18]. We then correlated these maps with
publicly available AS to IP address netblock mappings [14], and from the Rout-
ing Assets Database (RADD) [17]. After obtaining this data, we corroborated
these paths using multiple trace routes on PlanetLab using Scriptroute [19)].
These measurements confirmed that these paths were approximately 80% accu-
rate with errors occurring in resolving IP addresses to AS numbers, and due to
alternative AS paths. When the IP address of a host could not be resolved to an
AS, we chose verification servers at random.

5 Evaluation

In this section, we analyze the performance impact of VeriKey and discuss the
security of the system against man-in-the-middle attacks. We then follow with
a discussion about our system’s limitations and how it can be extended for
enhanced performance and added security.

5.1 Experimental Setup

After implementing our system, we deployed 47 verification servers across five
continents using PlanetLab. We then recorded measurements of the certificate
verification process from a range of locations for the client, verification servers,
and web server. The purpose of our experiments was to determine approximate
bounds on the time necessary for the certificate verification process to complete.
We estimated these bounds by taking geographically diverse measurements from
regional, national, and multi-national locations. More specifically, the regional
test involved machines across California, the national test involved machines
traversing the entire United States, and the multi-national experiments entailed

2 http://www.caida.org/tools/measurement /skitter/



Table 1. Approximate VeriKey overhead for non-cached certificates.

Standard SSL Handshake||Certification Verification
Bytes RTTs Bytes RTTs
Transferred Transferred
CeS 2,411 5x 2,411 5x
C«V - - 2,857 7x
V < S - - 2,411 5x
[ Total | 2411 | 5x [ 7679 | 17x |

global pathways. Each experiment consisted of a single client, verification server,
and web server.

5.2 Verification Process Overhead

Before we examine the experimental measurements, we first present the over-
head for a single session. Table 1 demonstrates the bandwidth overhead involved
for the certificate verification process from a single verification server, which is
independent of the location of the verification server. Assuming symmetric con-
nectivity between the client, web, and verification servers (i.e., the verification
server is roughly half the distance between the client and web server), the round-
trip-time is approximately 3.5 times a standard SSL handshake without caching.
The overhead in bytes is slightly over three times the standard SSL handshake.
The absolute amount of time and overhead, however, are relatively small as only
about five extra kilobytes are required, and the latency for certificate verification
is typically on the order of one second (more precise numbers based on the lo-
cations of the verification servers are shown in Table 2). More importantly, this
process is only a one-time cost, and after the initial verification process, the SSL
session resumes with no additional overhead. The round-trip-time can be further
reduced by more than 50% when temporary certificate caching is enabled on the
verification servers. This diminishes the need for the SSL handshake between the
verification server and web server, reducing the overhead to only double that of
a standard SSL handshake.

Table 2 displays the results of the verification delay for servers from various
geographical locations averaged over ten consecutive trial runs. We executed two
types of verification tests for each web server. In the initial test, the verification
server had not previously cached the certificate of the web server. In the following
test, the verification server had already cached the web server’s certificate and
directly returned it to the client, thereby reducing response time and subsequent
connections to the web server. Each set of tests was performed ten times and
the measurements were recorded. When the client, verification server, and web
server were physically closer, the overall performance gain of caching (measured
in latency) decreased by about 16%. This reduction in performance was due to
the limit on the latency between the client and verification server.

In the approximate worst case, the verification process could take almost
three seconds. While this delay would be evident to a user, we could potentially



Table 2. Verification process delay perceived by clients.

Verification Time
Test Client Vs Ws Non-cached|Cached
Multi- ucsb.edu uestcl.edu.cn| univie.ac.at 2.876s 1.830s
National 1 (USA) (China) (Austria)
Multi- |canterbury.ac.nz|u-tokyo.ac.jp |berkeley.edu 2.303s 1.891s
National 2| (New Zealand) (Japan) (USA)
Multi- mit.edu utoronto.ca zib.de 1.040s 0.691s
National 3 (USA) (Canada) | (Germany)
National | harvard.edu |colorado.edu| uci.edu 0.885s 0.674s
(USA) (USA) (USA)
Regional uci.edu berkeley.edu | ucsb.edu 0.236s 0.204s
(USA) (USA) (USA)

leverage this delay to query closer verification servers. Depending on the number
and density of the deployed verification servers, the average case would most
likely appear similar to the regional and national examples with verification
times of less than one second.

5.3 Man-in-the-middle Attack Prevention

In this section, we examine the protective measures of VeriKey against man-
in-the-middle attacks. The potential for a man-in-the-middle attack can exist
on the same network as the client establishing the egress SSL connection, the
ingress web server’s network, or anywhere in between. Our system successfully
prevents most of the possible attack vectors, and prevents all attacks that we
consider likely under our set of assumptions.

The most likely location for man-in-the-middle attacks are on client net-
works since they are not routinely monitored and most operating systems do
not implement proper safeguards. However, we can establish secure communica-
tion between the client and verification server. As previously discussed, this is
a result of requiring clients to install a web browser plug-in that stores the IP
addresses and public keys of the verification servers. This prevents the primary
classes of attacks including a rogue DHCP server, an attacker who has poisoned
the ARP caches of nearby hosts, and DNS spoofing that would redirect users
to a malicious server. Because all messages are encrypted with the verification
servers’ public keys, only the trusted verification servers are able to decrypt the
packets. If a client receives any certificate other than that of the verification
server, it becomes trivial to detect malicious behavior, and block further SSL
communications.

The verification servers’ networks could contain a man-in-the-middle at-
tacker. However, on the client-side, the attacker would be trivial to detect dur-
ing the SSL handshake since the certificate would not match that in the client’s
trusted CA root. In addition, our verification server path selection algorithm
will choose a verification server with the least amount of overlap between the



path from the web server to the client, and the path from the web server to the
verification server. Hence, a successful attack would essentially require a coordi-
nated attack on multiple autonomous systems. A VeriKey client can also detect
a compromised verification server by maintaining a history, and comparing the
results from other verification servers. If a particular verification server consis-
tently responds with invalid keys over a prolonged period of time, the client may
remove the verification server from its trusted list.

In our system, we eliminate user dialog messages for the average user because
we believe the messages do more harm than good. Hence, we systematically ver-
ify or reject the certificate without the need for human interaction. For advanced
users, VeriKey offers additional information about the potential threat and the
number of inconsistencies among the verification servers. Thus, our system pro-
vides versatility and security for both average and expert users.

5.4 System Limitations

In this section, we address the limitations of our system, which include man-in-
the-middle attacks that occur on the web server’s network, and the potential for
a denial of service.

A man-in-the-middle can exist on the web server’s network, which is the
hardest attack to detect from the viewpoint of the client and verification server.
However, we believe that it is also the least likely place for an attack to occur
since most web servers are on networks that employ firewalls, actively monitor
for malicious behavior, and employ IDS systems. The only possible way to detect
an attack near the web server is to require prior registration (e.g., obtaining a
signed certificate from a CA).

Another potential weakness of the system is that a man-in-the-middle could
potentially detect and block all traffic to or from verification servers. By cre-
ating a denial of service (DoS) attack against verification servers, the attacker
would prevent a client from being able to verify any certificates. However, since
it would be rather trivial to detect this type of abuse, the system would still
be constructive in preventing SSL man-in-the-middle attacks (even though the
client would no longer be able to communicate with the server).

VeriKey’s distributed architecture also protects against DoS attacks against
individual verification servers by removing any single point of failure. Therefore
we maintain constant availability with a large distributed set of servers, and in
the event that a verification server is attacked, it will not affect the entire system.

5.5 Security and Performance Optimizations

In this section, we analyze possible extensions to our system to provide better
security and performance. As mentioned previously, a man-in-the-middle attack
detected by our system may cause a denial of service for the client because the
client’s connection to the web server would be blocked for the duration of the
attack. On the other hand, if a man-in-the-middle has not compromised the
connection between the client and verification server, we may be able to use the
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Fig. 8. Verification servers operating as SSL proxies.

proxy connection to the web server. Thus, the verification server could operate
as an SSL proxy server, allowing the client to securely browse the remote web
server as shown in Figure 8. In order to prevent a man-in-the-middle between the
verification server and web server, the verification proxy server would function
as a client web browser. That is, the verification server would follow the same
process described in Section 4.4 and connect to other verification servers to
ensure that it has not become compromised by a man-in-the-middle attack itself.

The major downside of this design is that it puts substantial trust into the
verification proxy server and assumes that the verification server itself has not
been compromised. In terms of overhead, this approach would also place a larger
resource burden particularly on verification proxy servers. The client would also
notice an increase in latency for the entire duration of the session rather than
just the initial connection setup.

Another optimization to improve our framework’s response time is to cache
public keys from previous verification requests. This optimization works well,
provided that the remote certificate has not recently changed. In order to de-
termine when the verification server needs to update a certificate, we propose a
method to maintain a history of client feedback during prior verification sessions.
That is, when clients report a certificate mismatch, the verification servers will
contact the web server to update the certificate. This would employ the knowl-
edge gained from the optional confirmation status at the end of the VeriKey
process as described earlier in Section 4.4. We introduce the concept of a rep-
utation [4] to prevent a malicious host from deceiving verification servers into
launching denial of service attacks by directing them to persistently contact a
web server. This procedure would provide the ability for verification servers to



identify compromised networks and construct a reputation-based scheme per IP
Class C netblock, in addition to determining whether any of its own cached pub-
lic keys may be outdated. Verification servers would refresh public keys from a
web server only when a client with a positive reputation reported a key that did
not correspond to the one stored in its own internal cache. This method serves
two primary purposes: to establish that there is no man-in-the-middle between
verification server and web server, and to update the verification server’s public
key cache when a web server’s certificate changes. The downside of utilizing the
reputation scheme is that it may not always be trustworthy and would require
additional storage resources on the verification servers.

6 Conclusion

In this paper, we presented the design, implementation, and evaluation of an ar-
chitecture to augment the security of SSL public key exchanges. In particular, we
have introduced a means to verify the integrity of self-signed certificates. For av-
erage clients, we have substituted user interaction with an automated technique
to utilize the views of remote peers, while empowering expert users with sup-
plemental information about public key exchanges to make better assessments
when accepting certificates.

We have shown the benefits, performance impacts, and the limitations of
our system. Although our system is not free of weaknesses, we believe that the
advantages that it provides far outweigh the potential drawbacks. Through our
analysis, we are confident that our approach significantly increases the level of
difficulty for a miscreant to launch a successful attack. As more insecure wireless
networks are deployed, the number of attacks will likely increase because these
networks provide a more susceptible environment in comparison to traditional
wired LANs. Therefore, we see the need for a cost-effective and lightweight solu-
tion, such as the one that we have proposed, to protect and prevent users from
becoming victims of these attacks.
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